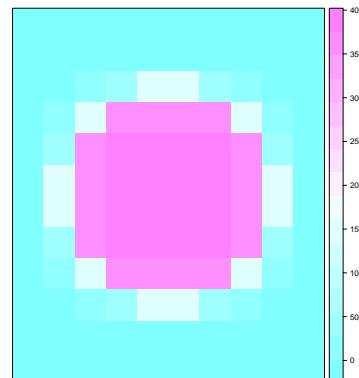


- observations are measured with error
- if obs. are spatially correlated, nearby obs. contain information relevant to the true value / prediction for this obs.
- \Rightarrow predict Y_i incorporating nearby obs.
- Nearby sometimes means "all", i.e. global mean
- Will talk about concepts with some details
 - Naturally leads to Bayesian inference, won't go that far in 406
- Bivand's example is disease mapping (Chapter 10)
- applies to count data for many outcomes
- We focus on normally distributed outcomes

Spatial smoothing

- Made up map of # cases of flu in central Iowa in January 2013
- Picture on next two slides
 - expressed as # cases / person
 - Overall rate in February expected to be similar to that observed in January
- Q: Where do you expect February rate to be the highest?
- it may help to know that # people large in middle, small at edges

"flu" data: sample size per area



"flu" data: empirical proportion of cases per area

- Made up map of # cases of flu in central Iowa in January 2013
 - expressed as # cases / person
 - Rate in February expected to be similar to that observed in January
- Q: Where do you expect February rate to be the highest?
- A: Not one of the red areas on the edge !!

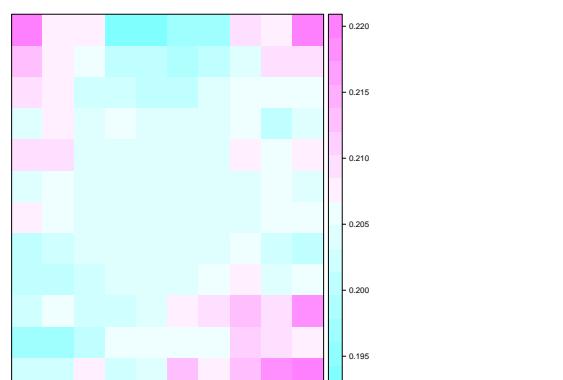
Spatial Smoothing

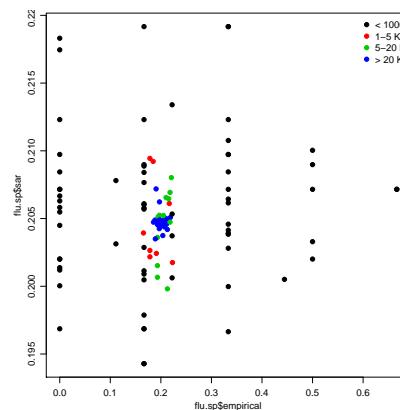
- Why an unusually large value on edge of map may be noise, not signal
 - often a consequence of sample size
 - each square in the middle is ca 10,000 people. Those on the edges are ca 100
 - e.g. big city in the middle of the mapped area
- sd of estimated rate 10x higher in edge squares.
- if assume rates are spatially correlated, nearby areas inform about poorly est. areas, especially if nearby areas have large N
- Another difference between areal and geostatistical data
 - Geostat: Often reasonable to assume constant variance
 - Areal: Often not.
 - Var, or sd, depends on something else about each region (e.g. N)

Smoothing using SAR or CAR models

- The CAR and SAR models in the previous section performed spatial smoothing
- Two types of predictions
 - ignoring neighbor values: prediction using only fixed effect part of the model
 - including neighbor values: fixed effect + sum of neighbor contributions
- Plot of 2nd on next two slides
- Predictions smoothed to overall mean because large values usually surrounded by smaller values
 - Average of neighboring residuals close to 0

"flu" data: SAR predictions





Spatial smoothing

- Why something new?
 - Var Y_i not constant in a CAR or SAR model
 - depended on neighbor structure
 - not on anything else
 - the independent ν_i had constant variance
 - In many applications
 - Small area estimation of survey data
 - Disease mapping
 - Var Y_i depends on additional features of location i

Role of sample size

- Often the sample size
- When Y_i for a location is an average of N_i responses
- When modeling disease prevalence
 - $Y_i = D_i/N_i$, number of disease cases / population
 - Var $Y_i \propto 1/N_i$
- Larger $N_i \Rightarrow$ smaller variance
- amount of smoothing depends on sample size
 - when N_i large: little smoothing, $\hat{\mu}_i$ close to Y_i
 - when N_i small: want to smooth a lot
- Need to allow Var Y_i to depend on something we specify

Smoothing areal data

- Will keep things simple to emphasize concepts
 - Observe Y_i in a region, have multiple regions
 - Believe that each Y_i observed with some random error
 - Want to predict "true" μ_i for each region
 - Normally distributed observations
- $$Y_i \sim N(\mu_i, \sigma^2)$$
- assume (to keep things simple) that σ^2 known
 - σ^2 may be different for each region
- Statistical problem:
 - Given Y_i predict μ_i
 - Two common ways to solve:
 - mixed model: $Y_i = \mu + \alpha_i + \varepsilon_i$, $\alpha_i \sim N(0, \sigma_a^2)$, $\varepsilon_i \sim N(0, \sigma_e^2)$
Find BLUP of α_i
 - Bayes: $Y_i \sim N(\mu_i, \sigma^2)$, find posterior distribution of $\mu_i | Y_i$

Smoothing areal data using a mixed model

- model: $Y_i = \mu + \alpha_i + \varepsilon_i$, $\alpha_i \sim N(0, \sigma_a^2)$, $\varepsilon_i \sim N(0, \sigma_e^2)$
- μ : fixed constant, α_i and ε_i are random effects
- Interpretation of the two random effects:
 - ε_i : measurement error, not repeatable, not part of "true" region-specific μ
 - α_i : repeatable characteristic of region i
- Goal: predict $\mu + \alpha_i$ for each region i
- Best predictor is $E \mu + \alpha_i | Y_i, \sigma_a^2, \sigma_e^2$
- Equation when both random variables have normal distributions, \mathbf{y} has multivariate normal distribution

$$\text{BLUP } \mu + \alpha_i = \hat{\mu} + (Y_i - \hat{\mu}) \frac{\sigma_a^2}{\sigma_a^2 + \sigma_e^2}$$

- When variances (σ_a^2 and σ_e^2) are estimated, more correctly called eBLUP (estimated BLUP)

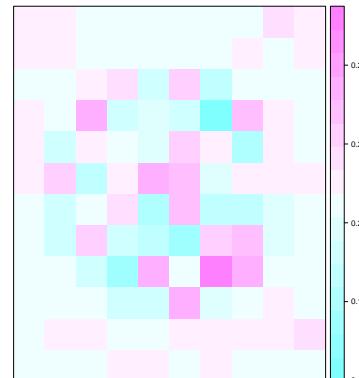
Smoothing areal data using a mixed model

- Often called Fay-Herriot model when both random variables have normal distributions

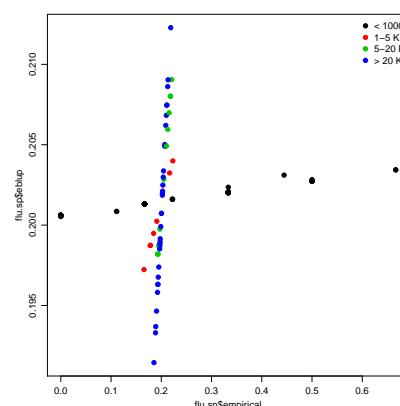
$$\text{BLUP } \mu + \alpha_i = \hat{\mu} + (Y_i - \hat{\mu}) \left(\frac{\sigma_a^2}{\sigma_a^2 + \sigma_e^2} \right)$$

- Behavior of the BLUP. Depends on σ_a^2 relative to σ_e^2
- Large "repeatable" variability, $\sigma_a^2 >> \sigma_e^2$: $\frac{\sigma_a^2}{\sigma_a^2 + \sigma_e^2} \approx 1$
 - BLUP $\mu + \alpha_i \approx Y_i$.
 - No (or little) smoothing
- Large measurement error, $\sigma_a^2 << \sigma_e^2$: $\frac{\sigma_a^2}{\sigma_a^2 + \sigma_e^2} \approx 0$
 - BLUP $\mu + \alpha_i \approx \hat{\mu}$.
 - extreme smoothing
 - Predictions are the estimated mean
- "Repeatable" variability usually assumed constant
- "Measurement error", σ_e^2 may vary between areas
 - Areas get different amounts of smoothing
 - how much depends on the size of measurement error

"Flu" data: Fay-Herriot smoothing



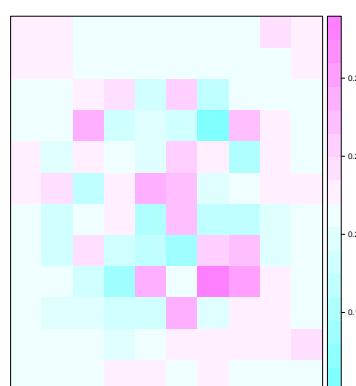
"Flu" data: Fay-Herriot vs empirical



- Context: survey to estimate something in a large region
- e.g. Proportion of US adults who smoke more than 1 pack a month
 - Determine sample size based on desired precision of the estimated proportion
 - For the overall (all US, men + women, all ages) proportion
- Common to also report "small area" estimates
 - men-only, women-only, 20-24 year olds, 20-24 year old men, ...
 - Less precise because fewer responses for that subgroup
- But subgroups may be related
 - e.g. men/20-24 may be related to: women/20-24, men/25-30, ...

- Variability between sub-group-specific estimates has two components
 - Measurement error: what happens when different people in men/20-24 sample?
 - Variability in "true" proportion: repeatable characteristic of group
- We have a Fay-Herriot model
- When groups are very different: $\sigma_a^2 \gg \sigma_e^2$
 - No, or little, smoothing
 - sub-group estimate is the observed value
 - little (or no) improvement in precision
- When groups are quite similar (or very imprecise): $\sigma_a^2 \ll \sigma_e^2$
 - No repeatable variation between subgroups
 - Lots of smoothing
 - Sub-group estimate is close to the overall mean
 - Much more precise

- Previous smooth towards the global average
 - location i ignored
 - In the notation used below, the non-spatial FH model is $\mathbf{y} = \mu + \mathbf{u} + \varepsilon$
 - What if you expect μ_i to vary spatially?
 - The "repeatable" variation (\mathbf{u}) is spatially correlated
 - The "measurement error" variation is independent
- $$\mathbf{y} = \mu + (\mathbf{I} - \mathbf{W})^{-1} \mathbf{u} + \varepsilon$$
- This is the spatial Fay-Herriot model
 - Uses a SAR model for the repeatable part (what's in software)
 - Requires specifying a spatial weight matrix
 - Same concept as measurement error kriging
 - ε is the measurement error
- For flu data, very small spatial correlation
so spatial and non-spatial FH give almost the same predictions



- There are many other approaches - all similar concept but different details
 - Bivand describes Marshall's local Empirical Bayes (EB) estimator
- When responses are counts or yes/no:
 - Distribution of y is not multivariate normal
 - No explicit formulae for smoothed predictions
 - Various approximations
 - Best approach is Bayesian
- And you can combine regression approaches with smoothing
 - Bivand has many details
 - Active research area.

Summary of smoothing: Multivariate normal data

- one source of variability, spatially correlated
 - SAR (or CAR) on errors
$$\mathbf{y} = \mu + (\mathbf{I} - \mathbf{W})^{-1} \boldsymbol{\varepsilon}$$
 - Predictions averaged over neighboring residuals
 - Amount of smoothing depends on spatial correlation
- two sources of variability, no spatial correlation
 - Fay-Herriot model
$$\mathbf{y} = \mu + \mathbf{u} + \boldsymbol{\varepsilon}$$
 - Predictions are smoothed towards overall mean
 - Amount of smoothing depends on σ_a^2/σ_e^2
- two sources of variability, with spatial correlation
 - Spatial Fay-Herriot model
$$\mathbf{y} = \mu + (\mathbf{I} - \mathbf{W})^{-1} \mathbf{u} + \boldsymbol{\varepsilon}$$
 - Predictions are smoothed towards local mean
 - How local depends on spatial correlation
 - Amount of smoothing depends on σ_a^2/σ_e^2