
Smoothing areal data

observations are measured with error

if obs. are spatially correlated, nearby obs. contain information
relevant to the true value / prediction for this obs.

⇒ predict Yi incorporating nearby obs.

Nearby sometimes means “all”, i.e. global mean

Will talk about concepts with some details

Naturally leads to Bayesian inference, won’t go that far in 406

Bivand’s example is disease mapping (Chapter 10)

applies to count data for many outcomes

We focus on normally distributed outcomes
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Spatial smoothing

Made up map of # cases of flu in central Iowa in January 2013

Picture on next two slides

expressed as # cases / person
Overall rate in February expected to be similar to that observed in
January

Q: Where do you expect February rate to be the highest?

it may help to know that # people large in middle, small at edges
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“flu” data: sample size per area
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“flu” data: empirical proportion of cases per area

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 5c Spring 2020 4 / 22



Spatial smoothing

Made up map of # cases of flu in central Iowa in January 2013

expressed as # cases / person
Rate in February expected to be similar to that observed in January

Q: Where do you expect February rate to be the highest?

A: Not one of the red areas on the edge !!
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Spatial Smoothing

Why an unusually large value on edge of map may be noise, not
signal

often a consequence of sample size
each square in the middle is ca 10,000 people.
Those on the edges are ca 100
e.g. big city in the middle of the mapped area

sd of estimated rate 10x higher in edge squares.

if assume rates are spatially correlated, nearby areas inform about
poorly est. areas, especially if nearby areas have large N

Another difference between areal and geostatistical data

Geostat: Often reasonable to assume constant variance
Areal: Often not.
Var, or sd, depends on something else about each region (e.g. N)
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Smoothing using SAR or CAR models

The CAR and SAR models in the previous section performed spatial
smoothing

Two types of predictions

ignoring neighbor values:
prediction using only fixed effect part of the model
including neighbor values:
fixed effect + sum of neighbor contributions

Plot of 2nd on next two slides

Predictions smoothed to overall mean because large values usually
surrounded by smaller values

Average of neighboring residuals close to 0
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“flu” data: SAR predictions
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“flu” data: SAR predictions vs observed
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Spatial smoothing

Why something new?
Var Yi not constant in a CAR or SAR model

depended on neighbor structure
not on anything else
the independent νi had constant variance

In many applications

Small area estimation of survey data
Disease mapping

Var Yi depends on additional features of location i
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Role of sample size

Often the sample size

When Yi for a location is an average of Ni responses

When modeling disease prevalence

Yi = Di/Ni , number of disease cases / population
Var Yi ∝ 1/Ni

Larger Ni ⇒ smaller variance

amount of smoothing depends on sample size

when Ni large: little smoothing, µ̂i close to Yi

when Ni small: want to smooth a lot

Need to allow Var Yi to depend on something we specify
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Smoothing areal data

Will keep things simple to emphasize concepts

Observe Yi in a region, have multiple regions

Believe that each Yi observed with some random error

Want to predict “true” µi for each region

Normally distributed observations

Yi ∼ N(µi , σ
2)

assume (to keep things simple) that σ2 known
σ2 may be different for each region

Statistical problem:

Given Yi predict µi

Two common ways to solve:

mixed model: Yi = µ+ αi + εi , αi ∼ N(0, σ2
a), εi ∼ N(0, σ2

e )
Find BLUP of αi

Bayes: Yi ∼ N(µi , σ
2), find posterior distribution of µi | Yi
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Smoothing areal data using a mixed model

model: Yi = µ+ αi + εi , αi ∼ N(0, σ2a), εi ∼ N(0, σ2e )

µ: fixed constant, αi and εi are random effects

Interpretation of the two random effects:
εi : measurement error, not repeatable, not part of “true”
region-specific µi

αi : repeatable characteristic of region i

Goal: predict µ+ αi for each region i

Best predictor is E µ+ αi | Yi , σ
2
a , σ

2
e

Equation when both random variables have normal distributions,
y has multivariate normal distribution

BLUP µ+ αi = µ̂+ (Yi − µ̂
σ2a

σ2a + σ2e

When variances (σ2a and σ2e ) are estimated, more correctly called
eBLUP (estimated BLUP)
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Smoothing areal data using a mixed model

Often called Fay-Herriot model when both random variables have
normal distributions

BLUP µ+ αi = µ̂+ (Yi − µ̂)

(
σ2a

σ2a + σ2e

)
Behavior of the BLUP. Depends on σ2a relative to σ2e
Large “repeatable” variability, σ2a >> σ2e : σ2

a
σ2
a+σ2

e
≈ 1

BLUP µ+ αi ≈ Yi .
No (or little) smoothing

Large measurement error, σ2a << σ2e : σ2
a

σ2
a+σ2

e
≈ 0

BLUP µ+ αi ≈ µ̂.
extreme smoothing
Predictions are the estimated mean

“Repeatable” variability usually assumed constant
“Measurement error”, σ2e may vary between areas

Areas get different amounts of smoothing
how much depends on the size of measurement error

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 5c Spring 2020 14 / 22

“Flu” data: Fay-Herriot smoothing
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“Flu” data: Fay-Herriot vs empirical
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Small area estimation: Intro

Context: survey to estimate something in a large region

e.g. Proportion of US adults who smoke more than 1 pack a month

Determine sample size based on desired precision of the estimated
proportion
For the overall (all US, men + women, all ages) proportion

Common to also report “small area” estimates

men-only, women-only, 20-24 year olds, 20-24 year old men, ...
Less precise because fewer responses for that subgroup

But subgroups may be related

e.g. men/20-24 may be related to: women/20-24, men/25-30, ...
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Small area estimation: Intro

Variability between sub-group-specific estimates has two components

Measurement error: what happens when different people in men/20-24
sample?
Variability in “true” proportion: repeatable characteristic of group

We have a Fay-Herriot model

When groups are very different: σ2a >> σ2e
No, or little, smoothing
sub-group estimate is the observed value
little (or no) improvement in precision

When groups are quite similar (or very imprecise): σ2a << σ2e
No repeatable variation between subgroups
Lots of smoothing
Sub-group estimate is close to the overall mean
Much more precise
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Local smoothing

Previous smooth towards the global average

location i ignored

In the notation used below, the non-spatial FH model is y = µ+u +ε

What if you expect µi to vary spatially?

The “repeatable” variation (u) is spatially correlated
The “measurement error” variation is independent

y = µ+ (I −W )−1u + ε

This is the spatial Fay-Herriot model
Uses a SAR model for the repeatable part (what’s in software)
Requires specifying a spatial weight matrix
Same concept as measurement error kriging
ε is the measurement error

For flu data, very small spatial correlation
so spatial and non-spatial FH give almost the same predictions
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“Flu” data: Spatial Fay-Herriot smoothing
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Local smoothing

There are many other approaches - all similar concept but different
details

Bivand describes Marshall’s local Empirical Bayes (EB) estimator

When responses are counts or yes/no:

Distribution of y is not multivariate normal
No explicit formulae for smoothed predictions
Various approximations
Best approach is Bayesian

And you can combine regression approaches with smoothing

Bivand has many details
Active research area.
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Summary of smoothing: Multivariate normal data

one source of variability, spatially correlated
SAR (or CAR) on errors

y = µ+ (I −W )−1ε

Predictions averaged over neighboring residuals
Amount of smoothing depends on spatial correlation

two sources of variability, no spatial correlation
Fay-Herriot model

y = µ+ u + ε

Predictions are smoothed towards overall mean
Amount of smoothing depends on σ2

a/σ
2
e

two sources of variability, with spatial correlation
Spatial Fay-Herriot model

y = µ+ (I −W )−1u + ε

Predictions are smoothed towards local mean
How local depends on spatial correlation
Amount of smoothing depends on σ2

a/σ
2
e
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